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The principal theme of this paper is that anomalously slow, super-Arrhenius relaxations in glassy materials
may be activated processes involving chains of molecular displacements. As pointed out in a preceding paper
with Lemaitre, the entropy of critically long excitation chains can enable them to grow without bound, thus
activating stable thermal fluctuations in the local density or molecular coordination of the material. I argue here
that the intrinsic molecular-scale disorder in a glass plays an essential role in determining the activation rate for
such chains, and show that a simple disorder-related correction to the earlier theory recovers the Vogel-Fulcher
law in three dimensions. A key feature of this theory is that the spatial extent of critically long excitation chains
diverges at the Vogel-Fulcher temperature. I speculate that this diverging length scale implies that, as the
temperature decreases, increasingly large regions of the system become frozen and do not contribute to the
configurational entropy, and thus ergodicity is partially broken in the super-Arrhenius region above the Kauz-
mann temperature TK. This partially broken ergodicity seems to explain the vanishing entropy at TK and other
observed relations between dynamics and thermodynamics at the glass transition.
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I. INTRODUCTION

In a previous paper �1�, Lemaitre and I explored the hy-
pothesis that anomalously slow, super-Arrhenius relaxation
rates in glassy solids can be understood by assuming that
transitions between the inherent states of such materials are
enabled by thermally activated chains of small molecular
displacements. �See �2� for a summary of research in a wide
range of topics related to the dynamics of glassy materials.�
More specifically, we developed a model of the spontaneous
formation of shear-transformation zones �STZ’s� by thermal
fluctuations in the absence of driving forces. STZ’s are lo-
calized irregularities in the density of molecules, or in near-
neighbor molecular correlations, that undergo irreversible re-
arrangements during shear deformation �3–5�. We visualized
their formation as the glassy analog of the formation of
vacancy-interstitial pairs. At low temperatures, such pairs
must become well separated in order to be thermodynami-
cally stable against recombination; and the state that includes
such a well-separated pair is inherently distinct from the state
in which the pair is absent. In our model, the activation en-
ergy for forming a stable pair is the free energy—including
the entropy—of a chain of molecular displacements that
moves the “interstial” away from the “vacancy” and is just
long enough to be marginally unstable against further
growth. In short, we solved a nucleation problem in which
the relevant reaction coordinate is the length of the chain.
The entropy associated with different chain configurations is
a measure of the number of routes across the activation bar-
rier �see �6��, and therefore plays a central role in determin-
ing the transition rate.

The analysis presented in �1� was at best only partly suc-
cessful. The excited chains seemed to have qualitatively the
right properties to predict a diverging viscosity at a nonzero
temperature T0. In order to produce a Vogel-Fulcher law,
however, we had to assume that the chains were restricted to
lie on two-dimensional surfaces, perhaps the interfaces be-
ween the frustration-limited domains of Kivelson et al. �7�,

or boundaries within the mosaic structures proposed by Kirk-
patrick, Thirumalai, Wolynes, and others �8–10�. This picture
may indeed deserve further investigation; I shall return to it
briefly in discussing the thermodynamics of these systems.
The main purpose of the present paper, however, is to argue
that the missing feature of the model discussed in �1� may be
the spatially disordered environment that is intrinsic to any
glassy material.

The problem of computing the activation energy of exci-
tation chains is related—but not exactly equivalent—to the
problem of computing the statistics of self-avoiding random
walks. That problem, in turn, is approximately equivalent to
solving a diffusion equation in a self-consistent repulsive po-
tential. In �1�, we approximated the solutions of those related
problems by adapting Flory’s method for calculating
excluded-volume effects in polymers �11�. I do essentially
the same thing here, but solve a �nonconserving� diffusion
equation in a random potential whose spatial disorder is that
of the configurational degrees of freedom of the glass. It is
well known that diffusion is constrained in disordered sys-
tems; thus the statistics of excitation chains must be deter-
mined by the interplay between two competing effects:
swelling of the excitation region due to excluded volume,
and contraction due to disorder. The result of this competi-
tion is the Vogel-Fulcher law in three dimensions.

Before entering into the details of this analysis, a few
remarks about how it is related to previous work in this field
are in order. The scientific literature abounds with attempts to
explain super-Arrhenius behaviors in glasses. Some of the
most important and influential of these papers, notably that
of Adam and Gibbs �12�, are almost half a century old. More
recent work along these lines has been carried out by
Wolynes and his collaborators �8–10� and by other investi-
gators as reviewed in �13�. �See �14� for a perceptive analysis
of the “Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes sce-
nario.”� All of these authors make one fundamental assump-
tion with which I concur—that the super-Arrhenius relax-
ation processes are intrinsically nonequilibrium phenomena.
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By this I mean that the super-Arrhenius formula pertains
strictly to the rate at which a glassy material makes transi-
tions between its inherent states �15–17�, and not just to the
statistics of those states themselves. This assumption sets us
apart, for example, from Cohen and Grest who, in their clas-
sic paper �18�, attributed super-Arrhenius behavior to perco-
lation of liquidlike regions in equilibrated states. An espe-
cially relevant counterexample is the long-standing
convention in engineering-oriented papers on metallic
glasses and other amorphous systems, where it is assumed
that the equilibrium density of flow defects is a super-
Arrhenius function of temperature. For example, see
�19–24�. I shall not dwell on this issue, but it needs to be
taken into account when reading that literature.

The principal way in which the super-Arrhenius processes
are relevant to thermodynamic equilibrium is that they deter-
mine the validity of the ergodic hypothesis. It is in this con-
nection that I disagree with the approach of Wolynes et al.,
which is based on the idea that the activated transition states
consist of droplets of an entropically favored liquid phase.
Such a phase seems to be precluded by the same, extremely
slow relaxation rates that all of these authors are trying to
compute; it cannot exist on experimentally relevant time
scales, especially not as an ephemeral transition state. Rather,
the activated chains discussed in �1� and in the present paper
might provide a better model of the transition mechanism
because they are ordinary thermal fluctuations occurring
within single inherent states. Moreover, the excitation-chain
model involves only short-ranged interactions between the
constituent molecules; it draws none of its ingredients from
infinite-range mean-field models or the like. Thus, at least in
principle, it should be possible to use it to develop micro-
scopic descriptions of various kinds of glassy systems.

The scheme of this paper is as follows. Section II contains
a summary of basic ideas and principal predictions of the
excitation-chain dynamics. Section III is devoted to the
mathematics of the disorder problem in glassy systems and
the derivation of a formula used in Sec. II. Readers who are
not interested in such details may skip that part of the paper;
but the analysis described there addresses some technical is-
sues that distinguish this nonequilibrium situation from oth-
erwise similar problems. In Sec. IV, I propose an interpreta-
tion of the preceding results that seems to explain the
striking relationships that have been found to exist between
the dynamics and thermodynamics of the glass transition—
that is, the apparent equivalence of the Vogel-Fulcher and
Kauzmann temperatures, the success of the Adam-Gibbs
theory, and the approximate proportionality between the dy-
namic fragility and the jump in the specific heat at the glass
temperature. I close with a list of unanswered questions.

II. EXCITATION-CHAIN DYNAMICS

All of the discussion that follows is based on a picture of
a glass as a supercooled liquid in which configurational re-
arrangements have become very much slower than the ther-
mal vibrational motions of the molecules within their local
environments, i.e., within their “cages.” The goal of the
excitation-chain theory is to compute the rates of configura-

tional rearrangements, and to do this using a mechanism that
involves just the rapid thermal fluctuations that ultimately
must drive those motions. An essential element of this pic-
ture is the notion of frustration—that the energetically most
preferred local configurations of the molecules do not fit to-
gether to fill space, and therefore that there is a geometrically
necessary population of somewhat higher-energy “defects”
where the local coordinations are not the most preferred
ones. We may think of the distribution of these relatively
populous, necessary defects as merging, at yet higher ener-
gies, with a much smaller population of shear-transformation
zones and other localized irregularities in the density and/or
molecular arrangements. The anomalously loose STZ-like
defects apparently govern the response of the system to ex-
ternal driving forces. They are the source of the observed
super-Arrhenius behaviors, and therefore are of special
interest here.

The relevance of one-dimensional excitations to the non-
equilibrium behavior of glassy materials is supported by the
molecular dynamics simulations of Glotzer and colleagues
�25–27�, which showed that transitions between inherent
states in glass-forming liquids take place via motions of
stringlike groups of molecules. The well-documented exis-
tence of force chains in granular materials �2� seems to be
further evidence in favor of the idea that forces and displace-
ments are transmitted primarily along one-dimensional struc-
tures in noncrystalline systems.

As in �1�, consider just the spontaneous creation of an
STZ, that is, its creation due to a thermal fluctuation in the
absence of external driving; and assume that such an event is
roughly similar to the formation of a vacancy-interstitial pair,
followed by displacements of atoms along an excitation
chain. Lemaitre and I visualized this chain as a thermal fluc-
tuation in which a linear array of momentarily loosened at-
oms undergoes small displacements, effectively moving the
vacancy and the interstitial far enough away from each other
that they do not quickly recombine. More precisely, the tran-
sition state for this activated process is a momentary thermal
excitation of the system that enables a chain of molecular
displacements just long enough that it is as likely to grow as
to decay. No molecule has yet moved fully out of its cage in
this transition state. Excitation chains smaller than the criti-
cal size, like subcritical liquidlike clusters in a supercooled
vapor, with high probability just disappear, leaving the sys-
tem unchanged. Once the chain exceeds this critical size,
however, the vacancy and the interstitial become uncorre-
lated with each other, and each finds its own stable position
in a new inherent state. The time taken by such a transition,
once it occurs, is roughly the time during which the chain
fluctuates between different near-critical lengths and con-
figurations as it passes across the activation barrier. This time
may be very long compared to an oscillation period for a
molecule in its cage, but it is very short—essentially
instantaneous—in comparison to the inverse of the super-
Arrhenius rate at which these transitions occur. In other
words, at temperatures near the glass transition, excitation
chains are very rare and relatively brief events.

The challenge is to compute the probability per unit time
for formation of an excitation chain. Consider a chain of
length N, measured in units of a characteristic molecular
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spacing which, without loss of generality, can be set to unity;
and suppose that the chain occupies a roughly spherical re-
gion of radius R in a three-dimensional space. Throughout
the following, R is the expected distance from the origin to
the last, Nth link in the chain; but it seems reasonable to
assume that the radius of the occupied region is the same as
R up to an unimportant geometrical constant.

The required formation probability for the pair plus the
excitation chain is the product of a Boltzmann factor contain-
ing the activation energy, multiplied by the number of con-
figurations of the chain with length N and extension R. It is
conventional to write the logarithm of this probability in the
form −�G�N ,R� /kBT, where �G�N ,R� is called the activa-
tion free energy because it includes something like an en-
tropy. It will become clear in Sec. III that this quantity is not
exactly a free energy in the conventional sense.

�G�N ,R� consists of several parts:

�G�N,R� = �G� + Ne0 + Eint�N,R� − kBT ln W�N,R� .

�2.1�

The first term �G� is the bare activation energy, that is, the
energy required to form the vacancy and the interstitial. �G�

becomes the ordinary Arrhenius activation energy at high
enough temperatures, say T�TA, where N must vanish be-
cause the chain is no longer needed to stabilize the excita-
tion. �See remarks at the end of this section.� In equilibrium
situations even below TA, �G� is the activation energy that
occurs in a Boltzmann factor for determining the population
of these defects; and detailed balance requires that this Bolt-
zmann factor be the ratio of their creation and annihilation
rates. Different processes, associated with different kinds of
defects, will have different values of �G�. On the other
hand, in nonequilibrium situations below TA, the chain dy-
namics near the glass transition may be much the same for
different defect-related mechanisms because the chains in-
volve large numbers of molecules. Thus the super-Arrhenius
behavior may be common to a variety of different relaxation
phenomena in a single material.

The remaining terms in Eq. �2.1� describe the excess free
energy of the chain. The second term on the right-hand side
of Eq. �2.1�, Ne0, is the bare activation energy of the N links
of the chain, unmodified by entropy or the self-exclusion
effect. The average energy per link, e0, is a measure of the
elastic stiffness of the molecular environments, that is, the
energy required to move two molecules far enough apart
from one another to allow a third to pass between them.

The third term Eint makes it energetically unfavorable for
the links of the chain to lie near one another. In principle,
this exclusion effect might be included directly in a sum over
self-avoiding random walks, perhaps using a nonperturbative
method like that described by Edwards �28�. For present pur-
poses, however, it seems better not to be so ambitious, espe-
cially since the exclusion forces in this case are likely to be
long ranged. The thermal fluctuation that loosens the mol-
ecules along the chain must push molecules closer together
at points away from the chain, thus producing an extended
repulsion. As a result, Flory’s mean-field approximation may
be more accurate here than it is for polymers. As in �1�, the

Flory interaction energy is proportional to the square of the
string density multiplied by the volume occupied by the
string. That is,

Eint�N,R� = kBTint
N2

R3 , �2.2�

where dimensionless geometric factors have been absorbed
into the definition of Tint. Note that this approximation makes
sense only in the limit of large N. The exclusion effect must
disappear for short chains—an important complication that
will be discussed later.

In the last term on the right-hand side of Eq. �2.1�,
W�N ,R� is a sum over chain configurations. Evaluating
W�N ,R� is the crux of the present analysis. In �1�, we wrote

ln W�N,R� � �N −
R2

2N
, �2.3�

where exp��� is the number of choices that a walk can make
at each step and exp�−R2 /2N�, the free-diffusion factor �up
to a normalization constant�, is the a priori probability for a
chain of length N to occupy a region of radius R. We then
minimized �G�N ,R� with respect to R and maximized it
with repect to N. That is, we found a saddle point of
�G�N ,R�, which we identified as the activation energy. In
three dimensions, our result was

�G*�T�
kB

=
�G�N*,R*�

kB
�

�G�

kB
+ const �

T3/4Tint
1/2

�T − T0�1/4 ,

�2.4�

where T0=e0 / ��kB�, and �R* ,N*� is the location of the saddle
point:

R* � �Tint

T
�1/5

�N*�3/5, N* �
T3/4Tint

1/2

�T − T0�5/4 . �2.5�

The exponent 1 /4 in Eq. �2.4� was clearly too far from the
Vogel-Fulcher formula to be consistent with experiment, and
thus we looked at its analog in two dimensions where that
exponent turns out to be unity. �Dimensionality entered only
via the interaction term.�

The thesis here is that the missing ingredient of the pre-
ceding analysis was the intrinsically disordered, glassy envi-
ronment in which the excitation chains occur. This disorder
appears in the activation energies for individual links of the
chain, and the variation of these energies reflects the struc-
tural disorder in the underlying molecular configurations. To
incorporate this disorder into the evaluation of �G�N ,R�,
write the activation energy at the position of the nth link of
the chain, say rn, in the form e0+kBT��rn�, where ��rn� is a
dimensionless random variable. If the disorder is uncorre-
lated from site to site, and e0 has been chosen to be the
average activation energy per link, then

���rn�	 = 0, ���rn���rm�	 = ��T�	n,m, �2.6�

where the angular brackets denote a statistical average over
realizations of the disorder. The function ��T� is the strength
of the disorder associated with the geometrically necessary,
frustration-induced, configurational defects discussed at the
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beginning of this section. These defects must pervade the
system, and their density should not be a strongly varying
function of temperature. Let this defect density be nd per
molecule, and further suppose that the variations in e0 are of
the order of e0=�kBT0. Then,

��T� = �0�T0

T
�2

, �0 
 �2nd. �2.7�

Equation �2.7� has several important implications. Note
that ��T� is a decreasing function of the bath temperature T.
This feature reflects the fact that, at lower temperatures, the
chains are more tightly constrained to lie in the minima of
the random field ��rn�, and thus the effective coupling be-
tween the disorder and the chains is greater. Note also that �
may be of order unity, especially in the neighborhood of T
=T0. The density of geometrically necessary defects is likely
to be substantial and, at lower temperatures, the fact that the
activation energy changes rapidly from site to site may in-
validate the simple approximation made in Eq. �2.7�. If � is
large, then a weak-coupling expansion of the kind described
in Sec. III would not be quantitatively accurate. However,
since this theory is meant primarily to be a plausibility argu-
ment in favor of the disorder hypothesis, it seems reasonable
to assume that it gives at least a qualitatively correct answer.

The crucial prediction of the disorder theory developed in
Sec. III is that the free-diffusion factor, exp�−R2 /2N� in
W�N ,R�, becomes negligable in comparison with a localiza-
tion factor exp�−
�R /2� for large N and R. Equation �2.3�
becomes

ln W�N,R� � �N −

��T�

2
R . �2.8�

Inserting Eq. �2.8� into Eq. �2.1� and computing the saddle
point, I find

�G*�T�
kB

=
�G�N*,R*�

kB
�

�G�

kB
+ 4�


6
�3/2��T�3/2T3/2Tint

1/2

��T − T0�
,

�2.9�

where

N* � 4�


6
�3/2��T�3/2T3/2Tint

1/2

�2�T − T0�2 , �2.10�

and

R* � � 6Tint


��T�T
�1/4

�N*�1/2 � 2�


6
�1/2��T�1/2�TTint�1/2

��T − T0�
.

�2.11�

To justify neglecting the diffusion factor, note that the first
expression for R* in Eq. �2.11� implies that R*2 /N* is of
order unity, while �R* grows like N*1/2 for large N*. Thus,
the disorder effect restores the Vogel-Fulcher result in three
dimensions, and restores agreement with experiment near T0
without invoking frustration-limited domains or mosaic
structures.

These results, as they stand, do not account for the tran-
sition between liquidlike and solidlike glassy behavior that

occurs when the excitation chains disappear at T=TA. The
fact that TA is a well-defined temperature is supported both
by experimental evidence such as that shown, for example,
in Fig. 1 of �29�, and by the excitation-chain idea itself. At
temperatures below TA, a molecule that makes a thermally
activated jump to a neighboring, energetically unfavorable
“interstitial” position is most likely to jump back to its origi-
nal position in its next thermally activated transition. At
higher temperatures, on the other hand, the Boltzmann prob-
ability that favors recombination can be compensated by an
entropic factor of the form exp��1� ��1
��, which counts the
number of allowed jumps that move the interstitial further
away from the vacancy. In other words, to evaluate TA, we
must compute the temperature at which the critical length of
a chain is N*=1. Just as the exclusion energy and the disor-
der are relevant when N* is large, the local environment of
the vacancy and interstitial must be relevant in computing
TA. An accurate evaluation of Eint for small N and R, or
preferably a non-mean-field theory of the small-chain limit,
will be needed in order to construct a quantitative theory of
the transition between super-Arrhenius and Arrhenius behav-
iors. That problem is beyond the scope of this paper.

III. PERTURBATION-THEORETIC ANALYSIS OF THE
DISORDER EFFECT

This section contains a somewhat old-fashioned demon-
stration of how the exponential decay law in Eq. �2.8�
emerges in a self-consistent perturbation-theoretic approxi-
mation. This approximation is srictly valid only in the limit
of small �. A better calculation, using more advanced tech-
niques, should be feasible.

The function W�N ,R� in Eq. �2.1� is a sum over chain
configurations. In �1�, Lemaitre and I approximated it by
writing

W�N,R� � W0�N,R� = eN�G0�N,R,0� , �3.1�

where G0�N ,R ,0� is the three-dimensional diffusion kernel
with a source at R=0:

G0�N,R,0� =
1

�2
�3/2e−R2/2N. �3.2�

It is useful to think of this kernel as a Wiener integral over
continuous paths r�n�, where n is a continuous variable run-
ning from 0 to N, and r�0�=0, r�N�=R. That is,

G0�N,R,0� = �
r�0�=0

r�N�=R

	r�n�exp�− �
0

N 1

2
� dr

dn
�2

dn .

�3.3�

�See, for example, the classic review article by Gel’fand and
Yaglom �30�.� In this functional form, it is clear that the sum
over paths is a version of the desired sum over chain con-
figurations. The Gaussian exponential factor, i.e., the Wiener
measure, constrains the paths to be connected, one-
dimensional objects embedded in a three-dimensional space.
This continuum approximation is convenient analytically and
is perfectly accurate so long as it does not make much dif-
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ference that the steps along a chain have length unity
�the molecular spacing� and that dn=1.

One problem here is that, strictly speaking, the glassy
disorder is not consistent with the continuum limit. It re-
quires that each unit step along a chain, say the jth, have its
own extra weight factor exp�−� j� in the sum over configu-
rations. In the face of this difficulty, it is easiest to solve a
slightly different problem. Let the chains remain as continu-
ous one-dimensional objects, with no explicit links of finite
length; but suppose that they exist in the presence of a ran-
dom potential ��r�, defined over the whole volume of the
system spanned by the continuous variable r; and suppose
that, in analogy to Eq. �2.6�,

���r�	 = 0, ���r���r��	 = �	�r − r�� . �3.4�

The assumption of 	-function �white noise� correlations for
the random field ��r� implies that the molecular length scale
�unity� on which this field varies is very much smaller than
any other relevant length scale in the problem, especially R.
Also, assume that the 	 correlations arise from a Gaussian
distribution over the ��r�. That is, the average of any func-
tion A����� is

�A	 =� 	��r�exp�−
1

2�
� �2�r�dr�A����� , �3.5�

where the functional differential 	��r� is defined to include a
normalization factor so that �1	=1. With these assumptions,
replace G0 in Eq. �3.1� by

G�N,R,0,���� = �
r�0�=0

r�N�=R

	r�n�exp�− �
0

N �1

2
� dr

dn
�2

+ ��r�dn� . �3.6�

The weight function W�N ,R� must then be obtained by com-
puting �G�N ,R ,0 , ����	 according to Eq. �3.5�.

This model is now in familiar territory. It is closely related
to the quantum model for a single particle moving in a ran-
dom potential. G�N ,R ,0 , ���� satisfies the differential equa-
tion

� �

�N
−

1

2
�R

2 + ��R��G�N,R,0,���� = 	�R�	�N� . �3.7�

Thus G is the Green’s function for the imaginary-time �N�
Schrödinger equation for a particle moving in a 	-correlated
random potential ��R� of strength �.

An apparently more closely related problem is that of
polymer chains in disordered media. In this case, the compe-
tition between strong disorder and strong self-exclusion has
been explored, for example, in �31,32�. Lemaitre and I used
the polymer analogy in our earlier paper �1�. This analogy
does deserve to be explored further; but it may not be quite
so close as it appears. In the polymer problem, one must
compute the disorder average of the thermodynamic free en-
ergy in a quenched system. In the present case, the disorder
is also quenched in the sense that it is fixed and independent
of the chain configuration; but the chain is not a preexisting

entity. The goal is to compute the disorder average of the
probability that the chain appears during thermal fluctuations
in the system; and thus the required quantity,
�G�N ,R ,0 , ����	, more nearly corresponds to an annealed
average.

The next step in this analysis is to construct a perturbation
expansion for G. To do this, it is easiest to work with the
Laplace transform of G:

G̃�w,R,0,���� = �
0

�

dN e−wNG�N,R,0,���� , �3.8�

which satisfies

�w −
1

2
�R

2 + ��R��G̃�w,R,0,���� = 	�R� . �3.9�

It also is necessary to renormalize w by writing w=w0+w�
and using w0+� as the perturbation. The renormalization
constant w0 will be chosen as in old-fashioned particle field
theory to cancel a formally �but in this case not really� di-
vergent integral.

Now expand G̃ in powers of this perturbation and average
the expansion term by term over �. �The basic idea for av-
eraging a perturbation expansion over a random potential
goes back to Kohn and Luttinger �33�. That procedure, and
most of the other techniques used in the next paragraphs, are
described in Chapter 4 of Mahan’s book on many-particle
physics �34�.� Averaging over the disorder restores transla-
tional symmetry, which makes it natural to work with Fourier

transformed functions. Let Ĝ�w ,k� denote the Fourier trans-

form of the average of G̃�w ,R , ����. The calculation of

Ĝ�w ,k� then follows completely conventional lines. The re-

summed perturbation expansion for Ĝ�w ,k� has the form

Ĝ�w�,k� =
1

k2/2 + w� + ��w��
, �3.10�

where here the self-energy � is a function only of w�. In
general, � would be k dependent; but that dependence would
arise from short-range spatial correlations in ��r�, which are
assumed to be absent. In fact, the molecular length scale,
taken here to be unity, provides a necessary short-wavelength
cutoff. In Eq. �3.10�, the relevant values of k are of order
1 /R�1, so it is appropriate �again in the limit of large R and
N� to make a small-k approximation—except, of course,
when one encounters short-wavelength divergences.

The lowest order, self-consistent approximation for � is

��w�� 
 w0 − �� d3k�

�2
�3 Ĝ�w�,k�� . �3.11�

Note that it is Ĝ and not the unperturbed propagator that
appears on the right-hand side of Eq. �3.11�. This self-

consistent approximation ensures that ��w�� and Ĝ�w� ,k�
have the same analytic structure in the complex w� plane, a
condition that is known to be true on very general grounds
and which turns out to be essential for present purposes.

Inserting Eq. �3.10� into Eq. �3.11� yields
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� d3k�

�2
�3 Ĝ�w�,k�� =
kmax


2 −
1


�2
�w� + ��w�� . �3.12�

Here, kmax is the anticipated short-wavelength cutoff that is
needed in order to evaluate a w�-independent divergent inte-
gral over k�. The renormalization constant conveniently can
be chosen to cancel this nominal divergence:

w0 = �
kmax


2 , �3.13�

so that Eq. �3.11� becomes

��w�� =
�


�2
�w� + ��w�� , �3.14�

and therefore

��w�� =

2�2

4
��1 +

8w�


2�2 + 1� . �3.15�

A second shift in the Laplace variable, w�=−
2�2 /8+w�
leads to

Ĝ�w�,k� =
1

k2/2 + ��w� + 
�/2�2�2
. �3.16�

The last step in this part of the mathematical development
is to invert the Fourier and Laplace transforms:

�G�N,R�	 = e−N�e0�T�/kBT�
−i�

+i� dw�

2
i
�

−�

+� d3k

�2
�3

�
eikR+Nw�

k2/2 + ��w� + 
�/2�2�2



e−N�e0�T�/kBT

�2
N�3/2 �1 +

�

4�2
��1 +


�N

2R
�e−R2/2N−
�R/2.

�3.17�

The final result is accurate up to corrections of relative order
1 /N. All of the shifts of the Laplace variable �renormaliza-
tion corrections� are combined here into a shift of the bare
excitation energy e0:

�e0�T�
kBT

� − ��T�
kmax


2 +

2��T�2

8
. �3.18�

This expression is apparently the beginning of a series in
powers of � that may—or may not—be convergent. The
main effect of �e0�T� is to shift T0; and, because we have no
a priori estimate of the unshifted T0, it is easiest to omit this
term altogether. On the other hand, if ��T� is large, its tem-
perature dependence will be important in fitting experimental
data near T0. In what follows, I omit �e0�T�, and note simply
that Eq. �3.17� exhibits the expected behavior specified in
Sec. II, specifically, the factor exp�−
�R /2�.

The various shortcomings of this perturbation-theoretic
result point to needs for further investigation. The approxi-
mation used here is unlikely to be accurate enough for ex-
ploring the excitation-chain model quantitatively if the val-
ues of � are as large as anticipated. Also, the calculation

properly should include the exclusion effect along with the
disorder, instead of dealing with each of these effects sepa-
rately as if they were decoupled from one another. And an
accurate theory should account more carefully for the
molecular-scale features that must play an important role
near TA, where the chains become short. What theoretical
techniques might be effective for solving the large-� versions
of this model? Perhaps diagrammatic techniques can be help-
ful in computing systematic corrections to the localization
factor exp�−
�R /2�. But perturbation expansions are noto-
riously incapable of predicting some of the most interesting
behaviors in systems of this kind. The only possibly relevant,
nonperturbative, strong-coupling approach with which I am
familiar is my 1966 calculation, in collaboration with Zit-
tartz, of the density of states in an electronic impurity-band
tail, where the result has an essential singularity as a function
of the disorder strength �35�. That calculation, however, dealt
specifically with the statistics of deeply bound states in a
white-noise potential, and not the diffusive motion of a
particle in such a potential where the bound states are
destabilized by the self-exclusion effect. I have not yet found
a way to apply that nonperturbative method to the present
situation. �See �31,32� for some ideas about nonperturbative
calculations in the related context of polymer chains in dis-
ordered media.�

IV. THERMODYNAMICS

The excitation-chain theory makes no assumptions about
the underlying thermodynamic properties of the glassy ma-
terials in which the excitations occur. In this sense, it is
closer to the kinetically constrained models of Fredrickson,
Andersen, and others �36–39� than it is, for example, to Der-
rida’s random-energy model �40� or Wolynes’ hypothesis of a
random first-order phase transition �9�. The kinetically con-
strained models have dynamic properties that look very
much like those of glasses—i.e., dramatic slowing of relax-
ation rates similar to that found in the present theory. One
might even postulate that STZ-like defects, containing ex-
cess free volume, could serve as the facilitating sites intro-
duced in �36�. �See also the work of Garrahan, Chandler, and
co-workers �41–43� for a related point of view about the
roles of facilitating sites.� Like the present model, the kineti-
cally constrained models require no thermodynamically sin-
gular behavior. It might be interesting to learn whether they
would exhibit anything like a Kauzmann phenomenon if they
were used in numerical simulations of differential scanning
calorimetry experiments.

On the experimental side, decades of careful thermody-
namic measurements indicate that the configurational en-
tropy of glassy materials drops linearly toward zero at the
Kauzmann temperature TK—a behavior that is known to be
consistent with equilibrium statistical mechanics only for
model systems with long-range and usually built-in random
interactions between their constituent elements. There are
striking relations between the Kauzmann thermodynamic
phenomenon and the dynamics of real glasses. The Kauz-
mann temperature TK seems to be very close to, and possibly
exactly the same as, the Vogel-Fulcher temperature T0. The
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Adam-Gibbs theory �12�, which says that the logarithm of
the viscosity is proportional to the inverse of the configura-
tional entropy near T0
TK, seems to be consistent with a
significant body of experimental data. And there are indica-
tions of at least a correlation, and perhaps a direct propor-
tionality between the measured jump in the configurational
specific heat at the glass transition and the dynamic fragility
in a wide range of glassy materials �9�. I find myself deeply
puzzled by this situation. It is hard for me to believe that
long-range, mean-field models can accurately predict the dy-
namical behavior of glasses consisting of small molecules
with short-range interactions. Moreover, as mentioned in the
Introduction, I am not convinced that the connection between
dynamics and thermodynamics has properly been established
for mean-field models that exhibit a thermodynamic Kauz-
mann phenomenon. On the other hand, the thermodynamic
observations must be taken very seriously.

The excitation-chain theory provides one clue that may
point toward a resolution of the dilemma. This purely dy-
namic mechanism predicts a length scale R*�T� in Eq. �2.11�
that diverges like �T−T0�−1 near T0 and vanishes at TA. An
isolated region of the system that is smaller than R* would
not be large enough to sustain critically long excitation
chains; therefore its constituents would be frozen and unable
to make thermally activated transitions between different in-
herent states. �The molecules in such a region, of course,
would continue to undergo rapid thermal fluctuations within
their cages; but these fluctuations would be unable to activate
configurational rearrangements.� Regions larger than R*,
however, would support critical excitations and be able to
change their sizes and shapes via molecular rearrangements,
albeit very slowly at low temperatures. If such regions exist
in any meaningful way, either as observably bounded do-
mains or simply as slowly fluctuating volumes in which the
correlations are extremely long lasting, then their character-
istic sizes would be proportional to R*. Smaller regions
would be frozen and would be able to grow only by coming
into contact with larger, unfrozen regions; the latter regions
would shrink to increase the entropy of the system as a
whole.

The question of whether spatial heterogeneities occur in
glass forming materials seems not yet to be clearly resolved.
See the reviews by Sillescu �45� and Ediger �46�, who argue
in favor of heterogeneity. In a recent paper, Berthier et al.
�47� point out that heterogeneity in glasses can be detected
by measuring multipoint dynamic susceptibilities, and show
experimental data indicating that heterogeneities exist. Shi
and Falk �48�, in STZ-related molecular dynamics simula-
tions, have seen spatial patterns apparently similar to what I
propose here. They find that their two-dimensional Lennard-
Jones glass, when annealed, consists primarily of domains in
which the molecules are strongly correlated in low-energy
configurations, and that these strongly correlated domains
are separated by interfaces containing higher-energy defects.

To solve the thermodynamic puzzle, I postulate that the
only unfrozen configurational degrees of freedom of this sys-
tem exist on the boundaries of strongly correlated regions of
size R*. In other words, I conjecture that the configurational
entropy per molecule of the system as a whole is propor-
tional to the surface-to-volume ratio 1/R* of such regions.
Specifically,

sc�T� �
s0

R*�T�
=

1

2
� 6



�1/2 s0��T − T0�

��0T0Tint�1/2 , �4.1�

where sc�T� is the average configurational entropy per mol-
ecule in units of kB, and s0 is the configurational entropy per
unfrozen molecule, perhaps multiplied by the thickness of
the boundary in units of the molecular spacing. The entropy
s0 is a measure of how free the boundary molecules are to
rearrange their positions, orientations and, in the case of
complex molecules, their internal configurations—freedoms
that presumably are lacking inside the frozen regions.

Here, and in what follows, I assume that T is sufficiently
close to T0 that the long-chain approximation is accurate, and
that the super-Arrhenius part of Eq. �2.9� dominates the
Arrhenius part, �G�. Equation �4.1� should not be taken lit-
erally out to temperatures in the neighborhood of TA,
where—as in the case of �G*�T�—some correction for van-
ishingly short chains will be needed, and where sc�T� must
join smoothly to the configurational entropy of the liquidlike
state.

Equation �4.1� implies that the configurational entropy
vanishes linearly in T at the Kauzmann temperature TK, and
that TK=T0. The combination of Eqs. �2.9� and �4.1� yields

�G*�T�
kBT

�

�0s0

3sc�T�
, �4.2�

which is essentially the Adam-Gibbs formula near T0.
Definitions of the glass temperature Tg generally have the

form

�G*�Tg�
kBTg

� 4�


6
�3/2��Tg�3/2�TgTint�1/2

��Tg − T0�
= g, �4.3�

where g is a large number of order 30 or so, chosen roughly
to represent the observable limits of long relaxation times or
high viscosities. Then Tg
T0, and the fragility m �44� is

m � − T
�

�T
��G*�T�

kBT
�

T=Tg

�
1

4
� 6



�3/2�g

2

�0
� Tg

�0Tint
�1/2

.

�4.4�

Thus the excitation-chain theory implies that glasses are
fragile when Tint�T0, and/or when the disorder strength �0
is small. Returning to the thermodynamic formula Eq. �4.1�,
we find that the jump in the specific heat at Tg
T0 is

�cp = �T
�sc

�T
�

T=T0

�
2s0�0m

g
2 . �4.5�

Here we recover the conjectured proportionality between
�cp and m, but with two material-specific parameters s0 and
�0 that might account for the observed scatter in the experi-
mental data. According to its definition, s0 should scale with
the “bead” number of the molecules, which ordinarily is fac-
tored out in obtaining the linear relation between �cp and m.
�See �9�.� Because it is basically a geometrical quantity, not
involving energy scales, �0 may be roughly a constant, of
order unity, for most glassy materials. This analysis also im-
plies that
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R*�Tg� � � 3



�g

�0
. �4.6�

Thus the critical length scale R* at the glass temperature is
predicted to be about 30 molecular spacings, independent of
the fragility. This prediction seems to be qualitatively consis-
tent with results shown by Berthier et al. �47�; but those
authors report a substantially smaller length scale.

Clearly, this thermodynamic analysis is incomplete and
highly speculative. The excitation-chain theory and its pro-
posed extension to thermodynamics both need to be explored
further and tested experimentally. We also need to develop a
theory of the crossover between super-Arrhenius and Arrhen-
ius behavior at TA, and to understand how the present solid-
like formulation crosses over to liquidlike mode-coupling
theories at higher temperatures �49,50�. And we have yet to
address the important issue of stretched-exponential relax-
ation. �See �51� for an idea about how stretched exponentials
might appear in STZ theory.�

However, the deepest theoretical uncertainty is the mean-
ing of Eq. �4.1�. If correct, this relation might conceivably
imply that ergodicity is broken not just below the Kauzmann
temperature but, to a continuously increasing extent as T
falls below TA, throughout the super-Arrhenius region T0
�T�TA. The language that I have used to support this con-
jecture is at best suggestive, and is far from being a system-

atic derivation of that equation. A list of unanswered ques-
tions makes the uncertainties abundantly clear. Is the domain
structure to be taken literally, or is it just a way of talking
about long-lasting correlations? Might there be some kind of
long-range order—orientational or perhaps something even
more subtle—inside the domains? Might the excitation
chains occur predominantly in the more highly disordered
boundary regions and, if so, might we need to return to the
two-dimensional picture proposed in �1�? Is a “frozen” re-
gion permanently frozen? Presumably not, because the do-
main boundaries must diffuse at something like the Vogel-
Fulcher relaxation rate. On the other hand, if all of the
dynamically accessible states of the system consist of frozen
domains separated by unfrozen boundaries, then Eq. �4.1�
might be justified as the appropriate statistical average. How
might such a picture be made into a quantitative, predictive
theory? What theoretical tools might be useful?
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